Tau protein is essential for stress-induced brain pathology

Dr Ioannis (John) Sotiropoulos
ICVS Institute
Life and Health Sciences School,
University of Minho, Portugal

ioannis@ecsaude.uminho.pt
Tau protein and its role in brain pathology

Alzheimer’s disease & Tauopathies

Sholz and Mandelkow *Cell Mol Life Sci* 2014 71;18, 3139;
Predisposing / Risk factors for Alzheimer’s disease

- Aging
- Mutations
- Gender
- Environment
- Stress
Stress role on brain structure and function

- In many Alzheimer patients, cortisol levels are elevated.
- Stress is suggested risk of AD.

Stress/GC induces:
- Neuronal atrophy
- Memory deficits

Stress/GC induces:
- Depressive behavior
- Anxiety

Glucocorticoid (GC)

Cortisol levels

- High GC levels impair hippocampal function
- Depressed patients exhibit elevated GC levels

Inhibitory signal

Stress

Hypothalamus

Glucocorticoid (GC)

Cortisol

Cortisol levels

Cognitive function

Hippocampal volume

Normal

Stress/AD

Stress/GC induces:

- Dendritic atrophy
- Synaptic loss

* Depressed patients exhibit elevated GC levels

Control

Depressed

nmol/l
Common symptomatology, common mechanisms?

Conclusions: A history of depression may confer an increased risk for later developing AD. This relation may reflect an independent risk factor for the disease.

Arch Gen Psychiatry. 2006;63:530-538

• Aβ levels are elevated in CSF of depressed patients while its levels may mark the transition from depression to the onset of AD (Post et al 2006; Sun et al., 2007).

• History of depression is correlated with increases of amyloid plaques and NFT (Rapp et al., 2006).
AD-related mechanisms in stress-driven pathology?

Stress

Alzheimer’s disease animal models
(Aβ- & Tau-based AD models)

GC

Stress-driven pathology (WT mice, WT rats)

Hyperphospho-tau

Accumulated tau

AD neuropathology & memory decline

Depressive pathology & cognitive deficits

Tau

Tau-KO mice
Similar physiological responses to chronic stress in WT and Tau-KO mice

Lopes et al., PNAS 2016; Lopes et al., Cer Cortex 2016
Absence of Tau blocks stress-driven depressive and anxious behavior

Depressive-like behavior

- **Forced swim** (learned helplessness)
- **Tail Suspension**

Anxiety

- **Elevated Plus Maze test**

Sucrose Preference Test (anhedonia)

Lopes et al., PNAS 2016
In contrast to WTs, Tau-KO exposed to chronic stress do not exhibit cognitive deficits

Cognition

Y-Maze

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>KO</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Distance in novel arm

<table>
<thead>
<tr>
<th></th>
<th>WT (CON)</th>
<th>WT (CUS)</th>
<th>KO (CON)</th>
<th>KO (CUS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35</td>
<td>30</td>
<td>35</td>
<td>30</td>
</tr>
</tbody>
</table>

% Time in novel arm

<table>
<thead>
<tr>
<th></th>
<th>WT (CON)</th>
<th>WT (CUS)</th>
<th>KO (CON)</th>
<th>KO (CUS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>40</td>
<td>50</td>
<td>40</td>
</tr>
</tbody>
</table>

NOR

<table>
<thead>
<tr>
<th></th>
<th>WT (CON)</th>
<th>WT (CUS)</th>
<th>KO (CON)</th>
<th>KO (CUS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80</td>
<td>70</td>
<td>80</td>
<td>70</td>
</tr>
</tbody>
</table>

Discrimination Index

<table>
<thead>
<tr>
<th></th>
<th>WT (CON)</th>
<th>WT (CUS)</th>
<th>KO (CON)</th>
<th>KO (CUS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MWM

<table>
<thead>
<tr>
<th></th>
<th>WT CON</th>
<th>WT CUS</th>
<th>KO CON</th>
<th>KO CUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Distance (cm)

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1500</td>
<td>1000</td>
<td>500</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Lopes et al., PNAS 2016
Stress-induced neurostructural changes are Tau-dependent.

Lopes et al., PNAS 2016
Neurochemical alterations induced by stress are abolished in Tau-KO animals.

HPLC analysis

Tryptophan → 5-Hydroxytryptophan → 5-Hydroxytryptamine (5HT) → 5-Hydroxyindole Acetic Acid (5HIAA)

Lopes et al., PNAS 2016
Mechanisms of synaptic plasticity are damaged by chronic stress in WT, but not Tau-KO, hippocampus

Electrophysiological analysis

WT

KO

Mn-enhanced MRI

Lopes et al., PNAS 2016
Are you stressed?
Then, your Tau moves to your synapses!!

Lopes et al., PNAS 2016; Pinheiro et al., Mol Neurobiol 2015
Tau protein is essential in the stress-driven depressive pathology and cognitive deficits

Lopes et al., PNAS 2016; Lopes et al., Cer Cortex 2016
Stress-driven brain pathology - What do you believe in?

Are you a Baptist?
(Aβ believer)

a Tauist?
(Tau believer)

a Baptized Tauist

Mood and Cognitive status
Age (years)

Neuronal malfunction & atrophy

Depression
AD/PD

Price 2009
European College of Neuropsychopharmacology Fellowship award 2009
AD/PD Young Faculty Award 2015
Research Award 2015

Price
Thank you very much

Institute of Life & Health Science Research, Portugal
Ioannis Sotiropoulos
Sofia Lopes
Joana Silva
Joao Vaz Silva
Sara Rodrigues
Chrysoula Dioli
Sara Pinheiro
Rita Trindade
Ana Ribeiro
Vitor Pinto
Morica Morais
Joao Cerqueira
Joao Bessa
Prof. Nuno Sousa

ICVS
Instituto de Ciências de Vida e Saúde
International Centre for Vision Studies

Max Planck Institute of Psychiatry,
Munich, Germany
Dr O.F.X. Almeida
Dr Michaela Filiou
Dr Michael Czitch
Prof. A. Takashima
Dr T. Kimura

Funding
Institute of Life & Health Science Research, Portugal

Ioannis Sotiropoulos
Sofia Lopes
Joana Silva
Joao Vaz Silva
Sara Rodrigues
Chrysoula Dioli
Sara Pinheiro
Rita Trindade
Ana Ribeiro
Vitor Pinto
Morica Morais
Joao Cerqueira
Joao Bessa
Prof. Nuno Sousa